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Fluctuating hydrodynamic interfaces: Theory and simulation
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The hydrodynamics and statistical mechanics of fluctuating fluid interfaces, both in and out
of equilibrium, are studied theoretically and by computer simulation. Theoretically, we show how
uncorrelated stresses in the fluids give rise to a correlated force on the interface, i.e., how a Markovian
hydrodynamic description with many degrees of freedom reduces to a non-Markovian description of
the interface with fewer degrees of freedom. As a key part of this description, we obtain a fluctuation-
dissipation theorem that relates the correlations in this thermal force to the hydrodynamic response
function of the interface. Simulations are performed with a two-dimensional momentum-conserving
lattice-gas model. Results show that an initially flat interface roughens in a manner that satisfies
dynamical scaling. Specifically, the time-dependent root-mean-square width W (L, t) of an interface
with an initial length L grows like L/2f(t/L%/?), where f is a scaling function such that W(t) ~
t'/% at early times and W(L) ~ L'? at late times. Except for a logarithmic correction in the
static behavior of large-L simulations, both scaling laws are found to to be in good agreement with
predictions based on the fluctuation-dissipation theorem. Also, as an independent validation of the
simulation method, the equilibrium power spectrum of the interface height is computed and found
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to be well described by the theory.

PACS number(s): 47.11.+j, 05.40.+j, 68.10.—m

I. INTRODUCTION

In two immiscible fluids, molecular motion excites cap-
illary waves on the interface over a wide range of length
and time scales. These waves may be probed experi-
mentally by nonintrusive techniques such as light scat-
tering [1,2]. Theoretical and experimental work, some of
it quite recent [3,4], suggests that such thermally excited
capillary waves may be important for understanding the
physics of droplet breakup [5,6].

On length and time scales between those pertaining to
molecular motions and those associated with continuum
hydrodynamics, the effect of thermal fluctuations in flu-
ids is well described by the addition of a fluctuating stress
tensor to the equations of incompressible hydrodynamics
[7]. This stress tensor, which is assumed to be uncor-
related in space and time, gives rise to a corresponding
uncorrelated motion in the bulk of the fluid. However,
in the presence of moving boundaries, the motion caused
by the hydrodynamic coupling between the motion in the
bulk and the motion of the boundaries causes space and
time correlations to arise. These correlations may be de-
scribed in terms of hydrodynamic functions that give the
response of the system to an external force. In other
words, the fluctuations may be related to the dissipation
in the system by a fluctuation-dissipation theorem.

Such a fluctuation-dissipation theorem was derived by
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Hauge and Martin-Lo6f [8] for the case in which the
boundary was that of a Brownian particle. Correlations
in the force acting on the particle from the fluid were de-
rived. From this result, Hauge and Martin-Lof were able
to predict the long-lived correlations in the velocities of
Brownian particles, the so-called long-time tails that had
been previously observed in molecular-dynamics simula-
tions by Alder and Wainwright [9].

Here the same formalism based on fluctuating hy-
drodynamics is used to obtain a similar fluctuation-
dissipation theorem in the case where the boundary is
the interface between two immiscible fluids [10]. It is
shown that the decay of the resulting correlation func-
tion is exponential rather than algebraic, as in the case of
the Brownian particle. This correlation function follows
from the frequency power spectrum which characterizes
the equilibrium state of the interface.

A key component of our study is the comparison of our
theoretical predictions with results from numerical simu-
lations of fluctuating interfaces in two-dimensional fluids.
(The numerical method—Ilattice gas cellular automata—
is itself interesting, as we point out later in this Introduc-
tion.) We focus our attention on two particular aspects
of fluctuating interfaces. First, both to verify our theory
and to validate our numerical method, we compare com-
putations of the equilibrium frequency power spectrum
of interface heights to theoretical predictions. Second,
we examine the nonequilibrium roughening (i.e., growth)
of an initially flat interface that decays to its equilibrium
state. This second aspect of the problem does not appear
to have been previously studied. One of our principal re-
sults is that the roughening of the interface satisfies a
dynamical scaling law.

Interface growth and roughening is the first of two
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main points of interest in our study. Recently, numer-
ous models for the nonequilibrium growth of interfaces
have been proposed and studied [11-13]. These mod-
els range from discrete-particle models for deposition on
a substrate to continuum models given in terms of par-
tial differential equations, such as the Edwards-Wilkinson
[14] and Kardar-Parisi-Zhang (KPZ) [15] equations. Such
studies have typically been concerned with purely local
growth, with the only relevant field being the interface
itself. In contrast, we study explicitly the coupling be-
tween interface growth and a fluctuating hydrodynamic
field. Thus the underlying dynamics that governs growth
in our case is qualitatively different from the aggrega-
tion processes usually studied in the kinetic roughening
of growing interfaces [11-13]. Fluctuating fluid interfaces
therefore present a challenging link between hydrody-
namics and the conceptual framework developed in pre-
vious studies of interface growth.

To be more specific, we note that, in our case, the
fluctuation-dissipation theorem, which gives the time cor-
relations of the force from the interface on the fluid, can
also be used to obtain the roughening of an interface
which is initially flat. This is a nonequilibrium process
(although not far from equilibrium) which is analogous
to the process of relaxation from the ballistic to the dif-
fusive phase of a Brownian particle. However, whereas
the root-mean-square displacement of a Brownian parti-
cle increases linearly with time ¢ in the ballistic phase,
the root-mean-square width W of the interface, which
derives from a sum of different Fourier modes growing at
different speeds, has, in general, a nonlinear time depen-
dence in the roughening phase. Due to surface tension,
W (t) does not increase indefinitely, as in the case of the
position of a diffusing particle, but instead reaches an
asymptotic value. The two-dimensional case (d = 2) for
a system of linear size L is characterized by the dynami-
cal (or finite-size) scaling law

W(L,t) = LXf (7}—) , (1)

where f is a scaling function such that W ~ tX/? for
early times and W ~ LX for late times, with x = 1/2
and z = 3/2. The higher dimensional cases, however,
are more complicated. In these cases W depends on a
second length scale, the shortest wavelength a available
to the system. For this reason, W (t) is not given by a
simple power law in ¢ when d > 2. For large t, W de-
pends logarithmically on L in three dimensions and be-
comes L independent in higher dimensions. These scaling
laws can be obtained from the general framework of the
fluctuation-dissipation theorem. But they can also be de-
rived by a simple phenomenological argument that relies
on a picture of the interface motion as a sum of standing
capillary waves that are distributed in energy according
to the equipartition theorem.

Equation (1) is not a new description of interface
roughening. Statistical solutions to both the Edwards-
Wilkinson [14,16] and KPZ [15] equations satisfy it;
moreover, various particle aggregation models show the
same average evolution [11,13,17]. In addition, however,

we have found such scaling for interface growth coupled
to a hydrodynamic field, a richer (albeit more compli-
cated) problem. There is yet one additional curiosity.
Surprisingly, and presumably by coincidence, the values
of the exponents in the hydrodynamic problem match
those which may be derived from the KPZ equation in
two dimensions. In both cases, the main point of interest
is the so-called dynamic exponent z; the result z = 3/2
implies a kind of “superdiffusive” roughening. In the
KPZ case, such a result relies crucially on the nonlin-
earity of the differential equation. Our hydrodynamic
theory, however, is completely linear.

The second point of interest in our study is the method
we use to simulate interfaces. Because we are study-
ing hydrodynamic phenomena whose time and length
scales span the gap between microscopic molecular dy-
namics and macroscopic continuum mechanics, we need
a method that can efficiently incorporate a wide range of
scales. Rather than simulating the full molecular dynam-
ics, we use lattice-gas cellular automata [18,19], which
may be viewed as a kind of discretized (and therefore
more efficient) molecular dynamics. Specifically, a two-
dimensional fluid is modeled as a collection of identical
discrete particles that hop from site to site on a hexagonal
lattice and obey simple collision rules that conserve mass
and momentum. To simulate interfaces, we use a variant
of the original lattice gas known as the immascible lattice
gas [20], one of a growing collection of discrete-velocity
models of immiscible fluids [21]. Importantly, the discrete
nature of lattice gases provides a natural noise source for
microscopic fluctuations, which in turn give rise to fluc-
tuating hydrodynamics at a macroscopic scale.

Because the lattice gas method is constructed from a
highly idealized microdynamics, the precise relation of its
macroscopic behavior to real hydrodynamics has been an
active area of research [19,22-24]. Both the average dy-
namics and some important aspects of the fluctuation
dynamics of lattice gases are now relatively well under-
stood. Dynamical effects of the intrinsic fluctuations in
lattice gases have been studied in the case of pure fluids
[24,25] and for fluids with suspended, Brownian particles
[26,27].

Lattice-gas models of interfaces (immiscible fluids) are,
however, less well understood [21]. Broadly speaking,
this relative lack of understanding stems from the unusu-
ally severe simplifications made in the immiscible fluid
models. The most important of these simplifications is
the lack of detailed balance, i.e., the microdynamics is
irreversible. It is therefore of great interest to quantify
the extent to which immiscible lattice gases capture the
physics of real fluid interfaces. For this purpose, we com-
pare our lattice-gas simulations with a theory which is
classical in the sense that it relies on the usual physi-
cal assumptions of detailed balance and the possibility of
defining a temperature. We find that both the equilib-
rium state (i.e., the frequency power spectrum of heights)
and the nonequilibrium behavior (i.e., the roughening)
of our idealized fluid interfaces are well described by the
incompressible (fluctuation-dissipation) theory up to a
sharply defined upper frequency, above which the com-
pressibility and density fluctuations of the lattice gas be-
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come important. Previous studies of interfaces in im-
miscible lattice gases have concentrated on the predic-
tion of surface tension [28,29] and nonhydrodynamic as-
pects of interface fluctuations [29]. The present study is a
detailed investigation of moving interfaces in immiscible
lattice gases and how they couple dynamically to micro-
scopic fluctuations. Given the ostensibly inadequate mi-
crophysics and the lack of thermodynamics in immiscible
lattice gases, the good agreement that we find between
simulations and classical fluctuating hydrodynamics is re-
markable.

The paper is organized as follows. First the gen-
eral framework of fluctuating hydrodynamics is reviewed
and the boundary conditions that couple the interface
to the fluctuating fluid are defined. Following this, the
fluctuation-dissipation theorem is derived from a Green’s
identity that is obtained from the unsteady Stokes equa-
tions in a separate Appendix. The fluctuation-dissipation
theorem contains a hydrodynamic response function
~i(t) which gives the interface response to an external
force. For the sake of completeness and readability, the
relevant solution of the unsteady Stokes equations is de-
rived. A general equation of motion describing the re-
sponse of an interface with surface tension to an arbi-
trary forcing is derived in terms of the interface degrees
of freedom only. On the basis of this equation and the
correlations of the thermal force the power spectrum for
the interface heights is derived in the general case of a
d-dimensional system. In order to quantify the impor-
tance of the correlations in the thermal force, the power
spectrum corresponding to an uncorrelated force is de-
rived and compared to the spectrum of a correlated force.
Following this, the theoretical predictions for the rough-
ening and scaling behavior of the interface are obtained
from the low viscosity limit of the fluctuation-dissipation
theory. Finally, we provide a short review of the immisci-
ble lattice gas and compare the results of simulations to
the theoretical predictions for the frequency power spec-
trum of interface heights and the time-dependent inter-
face growth.

II. THE FLUCTUATING HYDRODYNAMIC
DESCRIPTION

In the following we write down the basic equations
of fluctuating hydrodynamics and define the interface in
mathematical terms through the boundary condition on
the fluctuating part of the velocity field and the stress
tensor. In order to complete the fluctuating hydrody-
namic description, the fluctuating stress tensor s;; must
be included. We review briefly how the statistical prop-
erties of s;; may be derived from nonequilibrium statisti-
cal mechanics. This amounts to deriving the fluctuation-
dissipation relation on the level of the uncorrelated forces
in the bulk of the fluids. From this result we derive the
fluctuation-dissipation theorem on the level of the cor-
related force on the interface. Following this, the re-
sponse function ~i(t), which is needed as input to the
fluctuation-dissipation theorem, is obtained.

By this development the resulting description of the

interface, which is contracted from the full Markovian
description of the fluid (with more degrees of freedom),
reduces to a non-Markovian description in two ways. In
addition to the non-Markovian character intrinsic to the
time correlations of the fluctuating force, the response
function relates the interface height function to the en-
tire history of the (external or internal) force on the in-
terface. The fluctuation-dissipation theorem states that
these two, apparently different, forms of history depen-
dence have the same origin.

A. The equations of motion and the boundary
conditions

The description of a fluctuating incompressible fluid is
given by the Navier-Stokes equations [7]

Btu—|—u-Vu=—Y£+VAu+f, (2)
p
V-u=0, (3)

where u and P are the velocity and pressure, v the kine-
matic viscosity of the fluid, p the mass density, 8; and
A denote the time derivative and V2, respectively, and
equations can be taken to have an arbitrary dimension
d. The fluctuating force per unit volume represents the
thermal motion in the fluid. On time scales much larger
than the molecular mean free time the temporal corre-
lations in f can be neglected. Throughout the paper we
shall limit the discussion to the case where the two fluids
have equal viscosities and densitites.

For a given wavelength A the u-Vu term is of the order
w?AZ2 /A, where A, is the amplitude and w the frequency
of the oscillations. The 8;u term is of the order Aj)w?2.
Hence, for an oscillating fluid the u - Vu term is smaller
than the d;u term by a factor Ay/A. The assumption
of small amplitudes seems to be consistent with both the
theoretical and the simulated results, and in the following
we will work with the linearized equations.

Equations (2) and (3) with the nonlinear term removed
constitute the Markovian starting point for our analy-
sis. In the next section we examine the fluctuating force.
The fluctuating force in Eq. (2) causes the velocity and
pressure fields to split into a slowly varying part and a
fluctuating part that vanish upon averaging. So we write

u=1u-+u,
P=P+P, (4)
where @, P and 11, P denote the averaged and fluctuating

parts, respectively. By averaging the linearized version of
Eqgs. (2) and (3) we obtain the nonfluctuating equations

atﬁ = “V_f + VAﬁ, (5)

V-d=0 (6)

and the corresponding equations
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8t —7 + vAua+ f, (7)

AVAN

=1}
I

(-1}
I

0 (8)

for the fluctuating part of the fields. The two sets of equa-
tions above appear decoupled. However, as will be seen
below, the fluctuating fields couple to the nonfluctuating
ones through the boundary condition on the interface.

The vertical force per area F 4(x,t) on the interface I
from the fluid A (see Fig. 1) is given by

FA(x,t)=—n-0' (9)

and the force from the fluid (A + B)
F(x,t) = —n-[o(B) - o(4)] (10)
(11)

where the stress tensors in the first line of the above
equation are evaluated at z = 0 on the B and A sides
of the interface, respectively. The vector n is the unit
normal vector to the interface, pointing in the positive z
direction. The stress tensor is defined as

= -n-[o],

o=—-1P+pv(Vu+VuT) (12)
where I is the identity tensor and T denotes the trans-
pose. We shall employ the linearizing approximation that
the stress tensor on the right hand side of Eq. (9) is eval-
uated at z = 0, and not at the exact position of the
interface. Since o is a linear function of the pressure and
the velocity it follows that the force F 4 also decomposes
into a fluctuating and an average part:

Fa(x,t) = Fa(x,t) + Fa(x,t) (13)
where
Fai(x,t) =n -o(u, P),
Fa(x,t) =n-o(a,P) (14)

If the interface were a passive tracer surface without
surface tension or mass, it would simply follow the fluid
and the boundary condition would be that the velocity of

T2

B
__1/1\
hxt) — L x
A

FIG. 1. The height of the interface as a function of  and
t. The interface separates the two parts of the fluid A and

B. L is the system length. In three dimensions the surface
A=L2%
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the interface be that of the fluid. However, when there is
surface tension there will be a discontinuity in the stress
tensor across the interface, and the interface will act on
the fluid with a force that will partially suppress the fluc-
tuating fluid motion. The reason for this is that due to
the hydrodynamics a volume of linear size k~! must be
moved in order to excite a perturbation of wave number k
on the interface. Hence, inertial forces as well as the sur-
face tension will counteract deformations of the interface.
We shall make the approximation that on the interface
the fluctuating part of the velocity vanishes entirely, i.e.,
that
a(x,t) =0 whenx eI . (15)
Neglecting nonlinear terms again, the corresponding
boundary condition on the interface height is
u;(x,t) = h(x,t) whenx € I . (16)
Hence the interface motion will be given entirely in terms
of F. The above boundary condition is illustrated in
Fig. 2, which gives a qualitative picture of the velocity
on the interface and in the bulk. The velocity shown
is Fourier transformed in coordinates parallel to the in-
terface. In the bulk the velocity has a rapidly fluctuat-
ing component @1 that vanishes upon ensemble averaging
leaving a systematic slowly varying part. On the inter-
face 1 is shown to vanish.

To a first approximation the statistical average em-
ployed is over different realizations of the fluctuating
fields in the bulk of the fluid consistent with a given mo-
tion of the interface. However, as we shall see, the inter-
face motion is itself driven by F'. Hence, the velocity on
the interface will receive a small fluctuating component
due to the feedback mechanism between the interface and
the fluid. This fluctuating component can in principle be
put back in Eq. (15) to correct the boundary condition.
However, we shall assume that such an iterative scheme
would converge sufficiently rapidly that Eq. (15) already
gives an adequate description of the interface.

The theory to follow will largely be formulated in
Fourier space, and for later reference we define the proper
transforms now as

(17)

hae () = % / dS e~ H*h(x, )

u, (t)

FIG. 2. The (2 component of the) velocity measured on I
(smooth full line) and in the bulk (noisy full line). The dashed
line shows % k.



1626 EIRIK G. FLEKK@Y AND DANIEL H. ROTHMAN 53

with the inverse

h(x,t) = Z e *hy(t), (18)
Kk

where in two dimensions k has only one component k, =
2nn/L and n = 0,%£1,+2,..., and in d dimensions k =
(2m/A)n and n is a vector with integer components. A is
the area of the flat interface; in two dimensions A = L,

and the integration [ dS becomes fOL dz. We will denote
the spatial Fourier transform by the same symbol with
a subscript for the wave number, whereas we will assign
a caret to quantities which are also transformed in the
time domain. Thus

P (w) = 51;/ dt hae(t)e— it (19)
hk(t) = / dw izk(w)ei”t . (20)

B. The fluctuating hydrodynamic force

The behavior of the fluctuating force f in Egs. (2) and
(3) is obtained from statistical mechanics [7,8]. Hauge
and Martin-Lof [8] do this by analogy with the finite-
dimensional Gaussian Markov process. Hinch does it
on the basis of a generalized Langevin equation and the
equipartition principle [30]. We shall, for the sake of com-
pleteness, briefly review the conceptual structure of the
derivation of Hauge and Martin-Lof and the connection
between their result and the standard result for the fluc-
tuating part of the stress tensor [7]. Being uncorrelated
in time the autocorrelation function can be written

(fi(x, 1) f5(x,t)) = Usj(x = x')8(¢ — ') (21)

where U;;j(x — x') is some unknown amplitude function
depending on the spatial separation, and f is real. View-
ing the linearized version of Eq. (2) as a Langevin equa-
tion for the pair (u, P), the mean square fluctuation of
(u, P) can be written down in terms of U. However, it
is known that the probability of a fluctuation (u, P) is
given by the corresponding increase of the entropy AS
from the equilibrium value of (u, P) through

e(=AS/ks) (22)

where kg and T are the Boltzmann constant and the
temperature, respectively. The above Boltzmann factor
relates the amplitudes U;; and AS, which, when Taylor
expanded around the equilibrium values of (u, P), is a
quadratic function in (u, P). By the hypothesis that the
averaged decay of a microscopic fluctuation of (u, P) is
given by the noiseless (unsteady) Stokes equations, U can
be related to the entropy production dAS/dt instead of
the entropy itself. This relation has the form [8]

dAS

2T—-&7(5(t — t,)
= ! dVdV’ f f - ;
—k:B—T/ (u(x,t) - f(x,t) £(x', ') - u(x, "))

(23)

where the domain of integration is the entire space occu-

pied by the fluid. Since the entropy production (times T')

is simply the heat generated by the viscous dissipation [7]
dAS

7222 = D(u) = pl//dV (8ui Bjui + Dju; Byuy)

(24)
we get the relation

2kpTD(u)s(t — t)

- / AV AV (pu(x, ) - £(x, ) £(x,t') - pu(x’, ) .
(25)

This equation is the fluctuation-dissipation theorem on
the level of the Markovian force f. In the next section we
shall use this result to obtain the fluctuation-dissipation
relation for the integrated force F'.

The fluctuating force is often written as the divergence
of a fluctuating part of the stress tensor

f=V-s. (26)

The stress s;; gives the forces due to the thermal motion
in the fluid, and it should be considered as the driving
force for all the subsequent motion. In contrast to s;j,
the stress & represents the fluctuating part of the entire
stress in the fluid, which includes the pressure and the
viscous forces. Inserting the above expression for f in
Eq. (25) and performing a partial integration, compar-
ison with Eq. (24) shows that a possible choice for the
autocorrelation function of s;; is given as

(sir(x,t)s1(x',t)) = 2kpTpvd(x — x")5(t — t')
X [0:50k1 + 8:10k;] when x & I,
(27)
s(x,t) =0 whenxe . (28)

Equation (27) is the standard basis [7] for the fluctuating
hydrodynamics of an incompressible fluid.

Hauge and Martin-Lof [8] discuss the possible bound-
ary conditions for the force on the interface, and they
show that it is possible to allow s to have the same values
on the interface as in the bulk. In this case a correspond-
ing force —n - [s] would have to be added to the equation
of motion for the interface in order to ensure momentum
conservation. The equation of motion for the interface
will be introduced in the following. However, both con-
servation of momentum and the fluctuation-dissipation
theorem for f are satisfied with the choice of Egs. (27)
and (28). For the sake of mathematical simplicity we
will stay with the description of Egs. (27) and (28) and
the form of F given in Egs. (13) and (14) as the only
fluctuating force acting on the interface.

III. THE HYDRODYNAMIC RESPONSE

In this section we obtain the hydrodynamic response
function of a fluid subject to an external vertical forc-
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ing. This result will be needed in the next section where
we show that the fluctuation-dissipation theorem simply
gives the correlations of the force on the interface in terms
of this response function.

We shall consider a single, but arbitrary, Fourier com-
ponent of the interface force, given by k and w. In the
three-dimensional case we shall align the = axis with k,
thus effectively reducing the problem to two dimensions.
The form of the response function will be independent of
dimension. Indeed, in the following, dependence on the
number of dimensions will only enter when contributions
from different wave numbers k are summed.

The fluid and the interface will be considered as two
separate systems — one acting on the other with a force.
It is assumed that this force will produce low amplitude
oscillations of the fluid, and hence that the unsteady
Stokes equations will give an appropriate description of
the fluid. Then, due to the linearity of the problem, the
general response to an external force is readily obtained
by superposing different Fourier modes.

A. The solution of the unsteady Stokes equation

The mathematical form of the problem given by Egs.
(5) and (6) describing the velocity field u, and the bound-
ary condition on the force on the interface as given by
Eq. (11), takes the form

F(z,t) = —[n;0i;)
~ —[0,z]
— Foei(k-x—wt) , (29)

where Fj is the amplitude of the force per unit area acting
from the fluid on the interface — or, by Newton’s third
law, the force acting from the interface on the fluid. This
force will later be identified with the surface tension and
the fluctuating forces acting at the position of the moving
interface in a direction normal to it. We will require
continuity of the velocity

[u] =0, (30)

where the square brackets denote the change in u across
the boundary, and we will impose the condition

[022] =0, (31)

where the stress tensor is defined in Eq. (12). This condi-
tion means that there can be no force from the interface
on the fluid acting in the direction along the interface.
This would correspond to a spatially varying surface ten-
sion. These boundary conditions along with Egs. (5) and
(6) fully determine the flow field.

We will decompose the velocity field as

u=u, +up (32)
where up satisfies the linearized Euler equation

VP

dup = ——— - (33)
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and u, satisfies the diffusion equation
Otu, = vAu, . (34)

We note that up couples to the pressure, but is inde-
pendent of the viscosity, while u, is independent of the
pressure, but depends on the viscosity. In the present
case of oscillating flow, mass conservation must be satis-
fied independently by the two components of the velocity
field, i.e.,

Viu,=V-up=0. (35)

This results from the following. Taking the divergence of
Eq. (5) gives V2P = 0 and consequently 8;V -up = 0. It
follows that V -up must be time independent. But since
the flow is oscillating this can only happen if V-up = 0.
By Eq. (6) it then follows that also V - u, = 0.

By taking the curl on both sides of Eq. (33) we obtain

BtV xup =0 (36)

from which it follows that V x up =const = 0, since the
flow oscillates. In two dimensions the curl of the velocity
field will be understood to be the scalar d,u, — 8,u,.
Consequently there exists a velocity potential such that

up = V. (37)

It follows from the Euler equation and the assumption
that u = 0 at t = —oo that

The condition of mass conservation on up then takes the
form

A® =0 (39)
which implies that
Aup = 0. (40)

This result shows that u given by Eqs. (32)—(34) is indeed
a solution of the unsteady Stokes equation. In view of the
boundary conditions we will seek solutions of the form

(41)

u, (x, 2, t) = w(z)etlex—wt),

®(x, 2,t) = Bo(z)eex—wt), (42)

The diffusion equation and the Euler equation then take
the form

8280 — k3 = 0,

a§w+<fl-j“i—k2>w=o, (43)
where k = |k|. Due to the equality of the fluids below
and above the interface, P and hence & must be odd
functions of z. Also, u, and u, must be odd and even
functions of z, respectively. By requiring that the flow
velocity be finite at z = +o00, the solutions of the above
equations can be written
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@0(2) = —7%9 ﬁn];—%—)- 8_k|z|, (44)
w(z) = wo [—q %—;— sgn(z), 1] etalzl (45)

where sgn denotes the sign, the vector given in the brack-
ets is chosen so that V -u, = 0, and

Tw
q=k 2y 1. (46)
The square root in the above expression is defined by
a branch cut along the negative imaginary axis, so that
the argument of the square root will not pass the branch
cut for any w or k, and ¢ will always have a positive
imaginary part.

The velocity field obtained from Eq. (45) is

Uy = — (1, voe k2l 4 wo% e q"') sgn(z) etlex—wt)

U, = (woei al=l 4 'uoe_klz|) eHllex—wt) (47)

Since u, is an odd function of z, the continuity condition

implies that

uz(z,0,t) = 0. (48)

This gives one of the conditions on the integration con-.

stants. The other condition is obtained from Eq. (29) by
substituting the velocity field of Eq. (47) and the pressure
from Eq. (38) in Eq. (12). This gives

Oy = ~£w0 sgn(z)eilex—wt) (49)

It is easily shown that 0., (and oy, and o, in three
dimensions) is automatically continuous across the inter-
face when Eq. (48) is satisfied. Substituting Eq. (49) in
Eq. (29) gives vy and wp in terms of the external force,
and we obtain the final form of the velocity field:

Uy = km_l:l.q (6~k|z| _ ei ¢1|z’) Sgn(z) ei(k~x—wt)’
2wp

Uy = kFo (z e k=l 1 k eiqlzl) eillex—wt) (50)
2wp q

The applied forcing on the interface is given in the
form of a moving wave. For the sake of visualizing the
velocity field, we construct the corresponding standing
wave by adding the two fields given by k and —k. The
two-dimensional streamlines for (the real part of) this ve-
locity field are shown in Fig. 3 for some different times.
The closed vortex forms right after the interface veloc-
ity has changed sign and exists only for a short time 7.
In fact, an infinite cascade of vortices exists. We label
them sequentially with a number ¢ = 1,2,3, ... increas-
ing away from the interface. Their lifetime 7; decreases
exponentially with ¢. As the flow field itself is exponen-
tially damped with ¢, the higher order vortices (z > 1)
are vanishingly weak. A similar cascade of vortices ex
ists in the low Reynolds number flow past a sharp cor-
ner of sufficiently small opening angle. They were de-
scribed theoretically by Moffatt in 1964 [31]. They differ

t=01T t=0.2T

FIG. 3. The streamlines shown at various instants of time
t. The thicker streamlines correspond to a smaller velocity. T
is the period of the oscillations. The ratio of the viscous time
to the period (times 27) is @ = w/(k?*v) = 1. The horizontal
base of each figure is one wavelength 27 /k.

from the vortices in the present case by their time inde-
pendence, and by the fact that not only their strength,
but also their spatial size decays exponentially with q.
The present vortices resemble the vortices which are shed
from an oscillating sphere or ellipsoid [32] by their time
dependence. However, it appears that an infinite cas-
cade of time-dependent vortices has not been previously
observed.

B. The response function

If the interface is forced to move with a prescribed ve-
locity h(z,t), the fluid will respond by setting up velocity
and pressure fields given by Eqs. (5) and (6). This field
will act back on the interface in a way specified by the
stress tensor. Since both Egs. (5) and (6) and the stress
tensor are linear in the velocity and pressure field it fol-
lows that the force on the interface itself must be given by
h(z,t) in a linear form. This remains true also when the
relevant quantities are Fourier transformed. The linear-
ity ensures that different Fourier modes are uncoupled.
The most general relation between the interface height
and the applied force is then of the form

Fy(t) = % /OO dt’ et — ') hac(t') (51)

where the interface velocity is i’Lk, Fy is the average force,
and the response function is . Equation (51) is the
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non-Markovian relation between the force applied on the
interface and its motion. Note that it could have been
written in the opposite, and perhaps more intuitive, way,
giving the motion of the interface in response to the force.
However, we are free to interpret either quantity as the
dependent one. The motion of the interface is dependent
not only on the instantaneous value of the force, but, in
general, on all previous values, or, in the other picture,
the force needed to maintain a prescribed motion depends
in general on the entire history of the motion.

The right hand side of Eq. (51) is a convolution of
i and Ay, which upon Fourier transforming in time be-
comes a simple product:

Fie(@) = A1c(w) hi(w) . (52)

But Fk(w) can simply be taken as Fy in Eq. (29). The
interface velocity Ay is given in Eq. (16).

It is now a simple matter to read off the response func-
tion from Eq. (50). It can be written

. 2wp
(W) = —~ - (53)
k(i + g)

As a result of causality vy, (t) = O for negative ¢. This
follows from the unsteady Stokes equation from which
vk (t) is derived. It can be seen by Fourier transforming
the above expression, using the definition Eq. (19), and
noting that for negative ¢ the Fourier integral giving i (¢)
can be evaluated by integration along a contour in the
upper complex w plane. In this half plane i (w) has no
poles, and the integral vanishes. Hence the integral in
Eq. (51) only samples past values of hx. Equation (53)
is the result we need to evaluate the autocorrelation of
the fluctuating part of the force on the interface.

IV. THE FLUCTUATION-DISSIPATION
THEOREM AND THE FORCE
AUTOCORRELATION FUNCTION

In this section we derive the fluctuation-dissipation
theorem. It relates the correlations in the fluctuating
force F' on the interface to the (dissipative) hydrody-
namic response to an external forcing, given by the re-
sponse function 7, (t), which will be obtained in the next
section. The starting point for the derivation of the the-
orem will be a Green’s identity which is derived in Ap-
pendix A. The Green’s identity is based solely on the
equations of motion for the fluctuating and average ve-
locity and pressure fields and the equations giving their
boundary conditions on the interface. Hence it contains
no other physical information than that contained in
these equations. It reads as follows. If @ and P sat-
isfy Eqs. (5) and (6) and @ and P satisfy Egs. (7) and
(8) and the boundary conditions are given by Egs. (15)
and (16) for any given h(x,t), then
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Oz/_idt/ds-&(x,t)- (x, —t)

T
+ /_ e /A AV w(x, —t) - £(x, 1) (54)

where 7' is some large time which will eventually be taken
to infinity, dS points away from the fluid A, & is defined
by the fluctuating velocity and pressure, and all quanti-
ties are real. Here the integration is taken only over the
lower part of the fluid, denoted by the subscript .A. The
above identity is based on the unsteady Stokes equations
(5) and (6) and Egs. (7) and (8) and the assumption that
the driving force vanishes at large negative and positive
times, i.e., that £ = 0, when |¢| > T. It also depends on
the boundary condition that &1 = O on the interface.

Writing the equation corresponding to Eq. (54) for
fluid B and adding Eq. (54) for fluid A, we immediately
obtain

0= /_TTdt/ds. [&(x, 8)] - 6(x, —t)

T
+ /—T dt/dV u(x, —t) - f(x,t), (55)

where the continuity of @ has been used in writing the
first term and the volume integration in the last term is
over both parts of the fluid.

From the condition that the amplitude of the interface
motion be small compared to its wavelength we note that
the surface element vector dS is almost parallel to the z
axis, i.e., dS, = dS §,,. Hence we can write dS - [&] -
u(x, —t) & dS [6:.] wi(x,—t) = dS [5..] h(x,—t) =
dS F(x,t) h(x,—t) where F is the fluctuating force on
the interface, and in the second line we have assumed that
[0iz] = 0 when ¢ # z, i.e., that the off-diagonal terms of
the stress tensor be continuous across the interface. This
is consistent with the physical requirement of a constant
surface tension.

Using the above expressions in Eq. (55) and taking the
average of the square of the resulting equation we get

([ fas Pesooen))
([ favam-oe))

— 2%kpT / ~ dt D((x, 1) (56)

where Eq. (25) and the substitution ¢ — —t have been
used in the last line. This equation relates the fluctuat-
ing force on the interface to the dissipation in the fluid
associated with the average velocity u. This dissipation
can be identified as the work done on the fluid by the
average force F on the fluid over all of time, i.e.,
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/ dt D(a

/ ds / dt F(x, t)h(x, ) (57)
- / ds / dt A Fu(t) hw(t), (58)
—oo Kk

where we have passed to the Fourier transforms defined
in Egs. (17) and (18).

In Sec. III we derived the linear response of the system
to an external forcing. Substituting the expression in
Eq. (51) for the force in Eq. (57), Eq. (56) takes the form

2 / /tr<t dt' dt A*Y " how(t) b (t) <Fk(t) Py (t’)>

kk’

_ kpTA
== zk:/

dt' dt h_ s (t)c(t — t")huc(t'),
t'<t

(59)

where we have used the substitutions ¢ -+ —t and ¢/ —
—t' in the first integral above, and the symmetry t « ¢’
together with time translational invariance of an equilib-
rium average to constrain the left hand side integral by
t' < t. Since Egs. (54) and (51) hold for an arbitrary
function ilk(t), we can identify the integrands on the left
and right hand sides of Eq. (59). This gives

(Bt~ )P0 (0)) = S0 st~ ¢)) b (60)

where the time translation invariance of an equilibrium
average has again been used. This is the fluctuation-
dissipation theorem for the force on the interface written
in terms of the kth Fourier components of a real force.
It links the correlations in the fluctuating force on the
interface resulting from the uncorrelated stress fluctua-
tions in the fluid to the hydrodynamic response function
v, which is obtained above from purely continuum me-
chanical reasoning.

In the following we will need the fluctuation-dissipation
relation in terms of the complex force Fi (t) = Fyy(t) +
iFy (t) where Fyy(t) and iFyy(t) are the transforms of
the real and imaginary parts of F (x,t), respectively
Writing out the fluctuation-dissipation theorem for F1k
and F3 separately, and using that Flk( ) and Fy(t) are
uncorrelated and Fy (t) = Fy _y(t) — iF2_y(t), we obtain

<ﬁ'k(t)ﬁ'k: > = kBT Y ([t]) dxexer - (61)

This is the form of the fluctuation-dissipation theorem
for a complex force that we will use in the following.

In order to understand the above result it is possi-
ble to perform the inverse Fourier transform to get the
correlation function explicitly. To Fourier transform the
response function in Eq. (61) we introduce a frequency
cutoff Q and write

Q
Y (t) = /;Q dw e_“"t')'k(w) (62)

EIRIK G. FLEKK@Y AND DANIEL H. ROTHMAN 53

Having € finite allows interchange of the order of differ-
entiation and integration, and we can write

Q ~
k(t) = % /_ﬂ dwe_i“’tj%(,w—) (63)

w

where the integrand goes properly to zero for large w.
Hence, we can deform the real axis in the complex w
plane, shown in Fig. 4, and disregard contributions from
the Cr contour. By deforming the real axis to Ceus (the
poles shown by circles are irrelevant here) we get an in-
tegral which is easily solved by a simple secondary defor-
mation from the real to the imaginary axis. At this point
the exponent of the exponential becomes real instead of
imaginary, and the time derivative of the integrand can
be carried out. In the 2 — oo limit the result is

—k2v|t|

4pk3T 5 €

n [ * 2

Hence, the force correlation function is not only diver-
gent but nonintegrable when ¢ — 0. This paradox can
be resolved by returning to Eq. (62) where Q is finite.
Integrating Eq. (62) over the time domain 0 < t < T
and using the asymptotic forms of Jx(w) it can be ob-
served by interchanging the order of integration that
fOT dt (t) ~ Q@ when T > Q7! and correspondingly
that the variance (|Fi|?) ~ Q2. Equation (64) is hence
valid only for [¢| > Q~1. In a discretized molecular pic-
ture of a fluid nothing happens between particle interac-
tions. So if (2} is taken as the rate of particle collisions
on a given surface area A, the result that (|Fi|?) ~ Q2
simply means that the thermal force results from a sum
of collisions between particles of a given thermal veloc-
ity. This result is as one would expect from a discrete
picture of the fluid, and the divergence of Eq. (64) sig-
nals the breakdown of the continuum description given
by the hydrodynamic equations and the assumption of a

N

N

VvV

FIG. 4. The integration contour in the complex w plane.
The poles are marked as o. The poles in the lower half
plane give the capillary wave contribution to the height au-
tocorrelation function, whereas the pole at the origin gives a
time-independent contribution.
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d-correlated force in Eq. (21). The vanishing correlation
time of Eq. (21) corresponds to a vanishing mean free
time between collisions and hence to an infinite .

However, the description of the force correlations could
be made consistent within a continuum picture as well.
By taking the fluid to be compressible and modifying the
fluid dynamic equations accordingly, the response func-
tion would change, in particular for the high frequencies.
Presumably this would remove the divergence of the force
correlations since a compressible fluid will have a softer
behavior when subjected to very rapid oscillations than
will an incompressible fluid.

For later reference we take the v — 0 limit of Eq. (64).
This is most easily done by taking the limit directly in the
response function of Eq. (53). This gives ¥ — —2iwp/|k|
when v — 0 and we get

() = 28 (1) (65)
where ¢'(t) is the derivative of Dirac’s delta function.
Note that as opposed to the odd é'(¢) the even function
8'(]t]) is nonintegrable.

From Eq. (64) it is seen that the region where the force
is power-law correlated increases with decreasing viscos-
ity as (k?v)~!. The amplitude, on the other hand, de-
creases with decreasing viscosity as 1/v. The point v = 0
is hence singular in the sense that the force decorrelates
completely, whereas for v slightly larger than zero there
is a long-time correlation for t < (k?v)~!. For large v
the force decorrelates as e~ ¥t.

The fact that the inviscid fluid responds without a
memory effect, and hence that F becomes uncorrelated,
can be understood by considering the solution of the Eu-
ler equation given by Egs. (42) and (44). The stream-
lines obtained from these equations are time independent,
whereas the streamlines obtained from the full unsteady
Stokes equation depend on time as shown in Fig. 2. This
means that in the Euler case an external sinusoidal force
acting on the interface will always move the same amount
of fluid in the same way. This in turn means that the
acceleration of the fluid in response to the force acting
on the interface will everywhere be immediate. We hence
conclude that the force correlations stem from the viscous
diffusion of momentum. The correlations disappear when
the corresponding diffusion time (k2v)~?! either vanishes
or goes to infinity.

V. THE EQUILIBRIUM STATE

We now turn to the computation of the equilibrium
power spectrum and the corresponding interface height
autocorrelation function (A (t)h}(0)). The long-time be-
havior of (hu(t)h%(0)) will be shown to be exponential,
rather than algebraic as in the case of Brownian motion
[8,9,27].

We shall show that for the height-velocity autocorrela-
tion function (hx(t)hy (0)) the physical information con-
tained in the fluctuation-dissipation theorem reduces ex-
plicitly to the statement that spontaneous fluctuations

on the average decay as corresponding macroscopic per-
turbations of the system.

As a starting point we need the equation of motion
for hx. This equation is derived in the following, using
the picture of the interface and the fluid as two separate,
interacting systems as a conceptual guide.

A. Interface equation of motion

Equations (52) and (53) give the response of the inter-
face to an arbitrary external force F' acting on the fluid.
Now, the fluid interface is characterized by a surface ten-
sion o which gives rise to a force per unit area on the
fluid which when linearized has the form oVZ2h where
the Laplacian is (d — 1)-dimensional. From Newton’s law
of action and reaction this force must be equal and oppo-
site to the force F' acting from the fluid on the interface.
It then follows from Eq. (52) that

s 1
P :—F_—? k2hy + Fy ) . 66
s =5 (e B (66)

This is the equation of motion for the interface height.

Note that since A = u,(I) the interface velocity izk is
written as a response to the average force only. The
force F' cancels the fluctuating part of the surface ten-
sion force, which corresponds to the total force on the
interface. Hence F' acts as the driving force of the mo-

tion. Solving Eq. (66) for izk(w) we get

hac(@) = T(@) Fi(w) (67)
where we have introduced the second response function
1
N(w) = ——= . (68)
A (w) — %

If ﬁ‘k(w) is taken as an arbitrary force, Eq. (67) is a
general description of an interface with surface tension,
which is subject to an external or internal force. To in-
vestigate the history dependence of this description we
take the high and low viscosity limits of Eq. (68),

2 1 2
piw 1— (wo/w)z’ k*v =0

[14+0(5)], k%v = oo, (69)

Fk(w) — {

4pku

o
= ‘/— K3/2 70
wo 2P ( )

is the well-known capillary wave dispersion relation for
an inviscid fluid (7).

The v — 0 limit gives a simple propagator for
capillary waves, i.e., the equation (p/2k)hi(t) =
fiw dt' Fy(t')e~o% /(2wy), which in physical terms
means that the interface motion is a sum of capillary
waves excited at previous times. This is a highly non-
Markovian description as all previous events are equally
weighted. For finite v the excitations are damped as
e **vt and there is a characteristic time (k2v)~! over

where
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which the fluid responds with a memory. The high vis-
cosity limit, on the other hand, gives the equation

4pkl/ilk = Fk, (71)

which is like Stokes law and involves no history depen-
dence. Equation (71) can also be viewed as a (Marko-
vian) Langevin equation for a massless object. This cor-
responds to the fact that the interface has no independent
inertial mass. The full description of the interface results
when the force in Eq. (67) has the thermal correlations
given in Eq. (64). This description is in general non-
Markovian on account of both the force correlations and
the non-Markovian properties of Eq. (67). In the discus-
sion of the simulations we will return to the issue of the
relative importance of these two memory mechanisms.

B. Capillary waves

When there is no other force than the surface tension
force, i.e., when Fx = 0, Eq. (66) is homogeneous and
gives the capillary wave dispersion relation

iwik(w) —ok? =0. (72)

This relation can be shown to be equivalent to the dis-
persion relation found in Ref. [33]. In the high viscosity
limit this equation gives the imaginary solution

olk|

to leading order in 1/v. This solution corresponds to
an overdamped wave with a characteristic damping time
2pv/(o|k|). This time increases with viscosity and wave-
length and decreases with surface tension — as one would
expect. In the small-viscosity limit the solutions to low-
est order in v are

1 [k2 . k2
wzzt(w()—— Tywo)—% -—*210)0. (74)

It can be shown numerically that, when

2
Ky 1269, (75)

Wo

Eq. (72) has two solutions which are symmetric around
the imaginary axis and thus decribe left or right mov-
ing capillary waves. When the above inequality does not
hold, there is only one solution which is purely imagi-
nary, corresponding to waves that are overdamped. Note
that, when the inequality holds, the general solution of
Eq. (72) wy = *w, —iw; must have a negative imaginary
part in order for the capillary waves to dissipate their
energy. Correspondingly, I'y(w) will have no poles in the
upper half of the complex w plane.
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C. Height power spectrum

In order to obtain |/ (w)|? in terms of the power spec-
trum of the fluctuating force we take the modulus square
of Eq. (67). By Eq. (61) we have

© 2kpT

|Fk(w)|2 = (27‘_) A

(@) +H(=w)] . (76)
Here O is the size of the time integration domain. In the
end, the ® — oo limit is implied. _

Inserting the above expression for |Fi(w)|? in the
square of Eq. (67) and using the expression for 'y, we
get

o (@)? = ksT © Y (w)2+%k( w) i
(27)2 A [ (w) — 22 (—w) + 227
(77)
_ kT © ( 1 N 1 )
(2m)2A \ Ak(w) — 5 Aw(-—w) — 25
(78)
_ k=T © oy 2Re {T(@)} (79)

- (em)?4

where we have used the fact that Jx (w)* = Y (—w).

With the present definition of the Fourier transform
the Wiener-Khintchine relation for the velocity autocor-
relation function reads

(n0h0) = [~ dw e in@)P,  (80)

which by Eq. (78) takes the form

kT

(hac(t)hye (0)) = A

oo
/ dw (e7*! 4 &™) Ty (w) (81)
hde <}
where the substitution w — —w has been used in the last
term. Since I'y(w) has no poles in the upper half plane,
it follows that when ¢ > 0 (¢t < 0) a contour can be closed
in the upper half plane for the integration of the second
(first) term and only the first (second) term contributes.
We can thus write

kT

(hk(t)' 271'A/ dw e—wltlpk( ) (82)

as the final form for the velocity autocorrelation function.

We now identify the time dependence in this expres-
sion as that of a macroscopic perturbation of the inter-
face. Observing that Eq. (67) describes not only the dy-
namic response to ﬂuctuations but also the response to

an external force, we replace F with Gr(w) = Sok . This
corresponds to havmg a force Gy (t) = Gord(t) acting on
the interface, thus adding the momentum Gox to the sys-
tem at time £ = 0. The resulting velocity hy(t) is given

by Eq. (67) as

. G
hue(t) = 0k

d —iwt 83
= w Tk (w)e (83)

—0o0
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By normalizing the autocorrelation function in
Eq. (82) and the decaying velocity above by their re-
spective values at ¢ = 0 we find that

(i (£)h5(0)) _ (]t
(1P (0)12) hac(0)
which is the statement that the fluctuations, when av-
eraged to a correlation function, decay according to the
hydrodynamic response of the system. In other words, a
microscopic, spontanous thermal fluctuation decays, on
the average, with exactly the same time dependence as
does a macroscopic perturbation of the system. In the
present context, this result has been derived from the
starting point of fluctuating hydrodynamics and the cor-
responding uncorrelated body force f in the bulk of the
fluids, via the correlation function for the force Fi(t) on
the interface. If Egs. (84) and (67) had instead been
taken as the starting point, the correlation function for
the force Fy(t) could have been obtained (up to the pre-
factor kgT giving the strength of the thermal excitations
in the fluids). When the hydrodynamic description in
Eq. (67) is given, the various forms of the fluctuation-
dissipation theorem thus contain the same information.
The power spectrum for the height |y (w)|? is easily
obtained from Eq. (79) by the substitution |hy(w)|? =
w?| Ay (w)|?, in which case we get

@) = G g Re @) . (8

(84)

This power spectrum has the same form as that found by
Herpin and Meunier [34] in the more general case where
the fluids have different densitites and viscosities.

The correlation function corresponding to Eq. (85)
reads

kT

(h(thi(0)) = 225 [~ 2o,

WP (). (86)
—oo

This integral is evaluated in the long-time, low viscosity
limit in Appendix B using the integration contour shown
in Fig. 4. The result is

(hc()hic(0)) = (Pac (D) hic (0))ow + (Pac ()i (0)) cue (87)

where the two last terms correspond to the capillary
waves, and the C.,; part of the contour shown in Fig. 4,
respectively. When the values of the viscosity and sur-
face tension are such that oscillating (as opposed to over-
damped) capillary waves of wave number k exist, we ob-
tain

(h(t)hic (0))ow

_ kBT w; . —wi|t]
= —31 (cos(w,|t|) o sm(w,.[tD) e , (88)

where w, and w; are the absolute values of the real and
imaginary parts of the capillary wave poles shown in
Fig. 4. The contribution from the “cut” part of the con-
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tour is less trivial to evaluate. In the long-time limit it
has the asymptotic form

ZkBT pyl/z e—k2u|t|
k4 Ao2 |t'3/2 ’

(hk(t)hk(0)>cut = (89)

which together with Eq. (88) gives the long-time limit of
the height autocorrelation function.

There is an ambiguity concerning the treatment of the
w = 0 pole. The contour of Fig. 4 is chosen so that
the pole at w = 0 (giving a time-independent contribu-
tion) is not included. Consequently the height correla-
tion function vanishes at ¢t — oco. However, when t = 0
the contour can be closed in the upper half plane. As a
result, the contribution to the Fourier integral from the
pole at w = 0 is identified as the equilibrium variance of
the height and is given as
2 kT
(Ih(0)) = 2.

(90)

The physical content of this result is that of equipartition
of surface energy: The surface energy is here the poten-
tial energy given as o x (area of interface) [35]. When this
energy is written out in terms of the Fourier modes hy it
takes the form of a sum over terms which are quadratic in
hx in the small-height-gradient limit. Equation (90) re-
sults when each of these terms is given an energy kT /2.

In order to investigate the importance of the correla-
tions in Fx(t) we also give the power spectrum in the case
where (Fy(t)Fi(0)) o< §(t). This assumption is made by
Yang [36] who obtains an approximate form of Eq. (67).
In the case of uncorrelated forces, |Fi|? oc © and Eq. (85)
takes the form

o @) = gz M), (91)

where the prefactor is identified by comparison with
Eq. (85) and the requirement that the spectra be equal
in the w = 0 limit. Alternatively, this identification could
have been done using the fluctuation-dissipation relation
for the uncorrelated force or by integration over all w to
get (Jhk|?) and the use of equipartition. By using the
definitions of I'k, vk, and g it is possible to work out the
ratio

. /271/2
h@)? _ i, 1 w7
oE 2|1t 1+ 1+(k21/)
(92)
1+(4,:;V)2 when ;75 <1
~ 1 w \1/2 w (93)
L+ (550)"* when % > 1.

It is seen that the two spectra agree in the low frequency
limit. But in the high frequency limit they differ quali-
tatively. The physical reason for this is that it is always
possible (at least in principle) to probe the system at
frequencies high enough for the correlations in the force
F to be important. Note that the ratio does not de-
pend on the surface tension, but only on the ratio of w
to the viscous diffusion time. An alternative view of this
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problem in a weakly out-of-equilibrium context has been
considered by Grant and Desai [37].

Finally, we note an interesting comparison with the
long-time power-law decay of correlations in Brownian
motion [9]. The exponential, rather than algebraic, de-
cay in Eq. (89) corresponds to the fact that the corre-
lated interface motion is given in terms of Fourier modes,
each with a given wavelength 27 /k. The flow field associ-
ated with each mode thus has a characteristic length, and
the viscous decay of the corresponding momentum takes
place within a volume given by this fixed length. There
is a cancellation of momentum in the interface case. The
volume integrated momentum related to a perturbation
hy of the interface vanishes whereas the corresponding
integrated momentum related to a fluctuation of the ve-
locity U of the Brownian particle does not. Hence, while
the momentum related to hy will decay when it has dif-
fused a length 27/k, the momentum related to U must
diffuse away to infinity in order to decay. The slow al-
gebraic decay of this motion results because the shear
forces in the flow become sufficiently weak as the spatial
extension of the flow field increases.

VI. THE ROUGHENING INTERFACE

Having obtained the description of the equilibrium
fluctuations in terms of the power spectrum and corre-
lation function, we now turn to the description of the
roughness and the roughening of an initially flat inter-
face.

We shall be concerned with the root-mean-square in-
terface width W, which is defined by

W2(t) = <% /dS h?(x, t)>, (94)

where h(x,t) is real and the other quantities are as in
Fig. 1. We shall derive the time evolution of the Fourier
components in the low viscosity limit, before we obtain
W (t), from this result and Eq. (90), in the limits of small
and large ¢.

In terms of the spatial Fourier transform, Eq. (94)
takes the form

= IS ), (95)
2 k

where we have now taken hy(t) to be the Fourier trans-
form of a complex h(z,t). The factor 1/2 is included to
compensate for this.

In order to obtain the time dependence of W, we shall
assume that the interface is driven by a fluctuating force
which vanishes for ¢ < 0 and use the approximation that
this force immediately assumes its equilibrium correla-
tions, as given in Eq. (61).

The starting point will be Eq. (67) written in the
Fourier transformed form

huc(t) = % /Om ds Ri(t — 5) Gi(s), (96)

where the response function Ry is
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Ry (t) = /_w dw grk(w)e—i“f . (97)

The force Gk (t)
t<0.

The autocorrelation function for Gk(t) given by the
fluctuation-dissipation theorem, Eq. (61), will appear to
be divergent as 1/t3/2 at t = 0. Mathematically, the
divergence arises from the high frequency limit of the
corresponding Fourier integral. Since a precise physi-
cal description of any system should, in principle, always
contain an upper frequency cutoff, this means that the
divergence could be removed by introducing such a cut-
off.

For mathematical tractability we shall, however, keep
the infinite integration limits and instead introduce a
proper regularization step in the calculations. Also, we
shall evaluate the Fourier integrals only in the v — 0
limit. For the simulations this can be justified to some ex-
tent by the fact that the viscous relaxation time (k2v)~
is larger than the capillary wave period even for the small-
est wavelengths on the lattice.

Upon squaring Eq. (96) we can write

= Fi(t) when t > 0 and Gy (t) = 0 when

) = [~ El;df Ri(t — $)Ri(t — )(Cu ()G (0))
- 2ij 0 ‘(1;:; Rt — s)RL(t — &)
o (98)

where the response functions v, and Ry remain to be
evaluated. As v — 0, k/q — 0 and ~(t) is given by the
Dirac ¢ function in Eq. (65). When these replacements
are made in Eq. (97) we obtain the integral

Ry = [~ do (9)
k = 5 w o )
2p J_oo w? — 2—pk3

which is easily evaluated for ¢ > 0 by enclosing the two
poles at w = *wq by a contour in the lower half w plane.
For t < 0 a contour can be closed in the upper half plane,
giving Rx(t < 0) = 0. In other words, the response
function Ry (t) is causal, as one would expect. The result
fort > 0is

km
Ry (t) = — sin (wot), 100
(t) = - sin (wot) (100)
where wq is given in Eq. (70). Combining Egs. (98) and

(100) and the zero viscosity limit of yi(t) we get

_ 2kpT
sz/d2/ ds’ sinwo(t — )]

(101)

(hac(t) )
x sinfwo(t — s')] §'(s — &),

where the factor 2 in front of the last integral comes
from the restriction s’ < s;. The introduction of the
integration limit s, > s represents the above mentioned
regularization. In the end the s; — s limit is implied,
but it is crucial that this limit is taken after the s’ in-
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tegration is performed, as this integration will pick up
the contribution from the delta function §’. After the s’
integration Eq. (101) takes the simple form

4kpT b
() = =5 | dssinfwo(t = 5)] coslwo(t — 5)]
t
= % ds sin[2wo (t — s)]
g 0
= il;;—zi sin? (wot) . (102)

By taking the time average of Eq. (102), the equipar-
tition result given in Eq. (90) is recovered. The fac-
tor 2sin? (wot) describes standing capillary waves that
are all initiated with the same (vanishing) phase and
have frequencies given by the inviscid dispersion relation
(70). Hence, Eq. (102) could have been written down
from the simple physical prescription that the interface
will roughen by the motion of preexcited capillary waves,
with amplitudes distributed according to the equiparti-
tion theorem. This picture is not surprising in view of the
assumption that the fluctuating forces instantaneously
assume their equilibrium correlations. In fact, this as-
sumption would follow if flat interfaces were considered
a spontaneous state of the system. In this case the further
dynamics of the interface would clearly be governed by
equilibrium statistics. In the following we compute the
form of W (t) that results from Egs. (102) and (90) in the
general case of an interface contained in a d-dimensional
space of linear size L in all directions except possibly in
the direction perpendicular to the interface.

A. The steady state

First we obtain the equilibrium interface width W. In-
troducing the length a, which is the smallest wavelength
available for the system, we note that there is an upper
cutoff for the wave number, i.e., k < 27 /a, and a corre-
sponding cutoff for the components of n, nmax = L/a.
The length a can be taken as the scale at which the hy-
drodynamic description breaks down for a real system or
the lattice constant in a simulation. It cannot be given
a meaningful exact value, and it is therefore important
to verify, where possible, that the end results are a inde-
pendent.

From Eq. (90) we can write

kgT
2 _
w* = Z ok2L(d—1)

k

kT

_ 7 (3—d B

=G4 3 o @mm)? (103)
n:n<L/a

where the sum is over the (d—1)-dimensional k space and
the substitution k; = 2nn;/L where n; = £1,+2,... and
7 is a Cartesian index, has been used in the second line.
This sum can be approximated by an integral to evaluate
the high k contribution. The integrand that results from
doing the integration in polar coordinates will contain a
geometric prefactor of the form k(¢4=2). When d = 2 the

a — 0 limit of the sum exists, and for finite values of a
the relative correction to the asymptotic result is o(a/L).
When d = 3 the sum will increase logarithmically with
L/a, and when d > 3 the high wave numbers dominate
completely and the L dependence goes away. Using the
exact relation Yoo 1/(2rn)? = 1/24, Eq. (103) takes
the form

L, d=2
12°7)
w2 = kel 1n(§2, d=3 (104)
g a4 d>3,

where the exact numerical prefactors are included only
in the d = 2 results.

B. Nonequilibrium roughening

We now turn to the derivation of W (t) for small and
finite t. From Eqs. (95) and (102) we can write

2 7 (d—1
n:n;<L/a Ukn L :

W2(t) = sin® (wot) . (105)

As before, the limit @ — 0 is meaningful only in the two-

dimensional case. Using the explicit form for wg, given in

Eq. (70), the above expression can be cast in the scaling
form

3/2 —

Wz(t) — { L ]:(t/L )7 d 2

106
- 9(g, 373), 423, (106)

where the d = 2 scaling function has the explicit form

fu) = ; ;'(“fTT)Z sin? (\/:—%(2%71)3/211) .

This function, which is obtained in the v = 0 limit, re-
tains its oscillatory behavior for arbitrarily large t. For
this reason, it does not describe the asymptotic state of
the interface, where the initial phases have been random-
ized and the interface has reached its final width. This
randomization, which is caused by the dissipative decay
of the initial excitations, is present only when v # 0.

For small times the roughening of the interface will
be dominated by the shortest wavelengths. This can be
seen by comparing the values of |hy(t)|? ~ w? |hx|? ~
wi/k* ~ k derived from Eq. (102) for different wave
numbers. The long waves with smaller wave numbers
grow at a slower rate than the shorter waves by a relative
factor vk. When d > 2 the domination of the high wave
numbers will be enhanced by the higher density of states
with large k. Hence initially W cannot depend on the
system size L, and in the two-dimensional case the scaling
function f(u) must have the form

(107)

Flu) ~ u?3 (108)
for small u, in order to make the right hand side of
Eq. (106) L independent for small t. This simple argu-
ment cannot be used, however, to determine the scaling
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function g. Hence, as will become evident below, only the
time dependence of the interface in d = 2 is described by
a power law.

In order to obtain a closed form expression for W?2(%)
in d = 2 and the time dependence that follows from
Eq. (105) when d > 2, we approximate the sum by an
integral. Changing to polar coordinates in the integral
this gives

kgT di1k 2sin? wot

2 —

Wi = = /(27r)d—1 2
B kBT 27w/a

dk k=% sin?(wyt), (109)

o Jo

where again the prefactor is correct only for d = 2. By
the substitution z = wt this integral takes the form

2kpgT(2p)%/3°1 ,_ wat sin®
20, _ 2-2d/3
W=(t) = 3rod/3 ¢ A d$m(3—2d/3)’

(110)

where w, is the frequency of the capillary wave with wave-
length a. When d = 2 and the dependence on the upper
integration limit becomes negligible, the above time de-
pendence is a simple power law, whereas when d > 2 the
time dependence also depends on the time scale 1/w,,
and is more complex. When d = 3 the prefactor in
Eq. (110) becomes time independent, and only the time
dependence contained in the integral W2(t) ~ Inw,t for
t > 1/w, remains. When d > 3 the interface reaches its
asymptotic width on a time scale w; !, and there is no
long-time evolution.
It can be shown that the relevant integral for d = 2,

I_/mdmsinzx_ 7r
~Jo x3/3  21/3,/31(5/3)

= 1.5947..., (111)

where I' is the usual Gamma function. The resulting
dynamic behavior for ¢ > w; ! can thus be written

1/8
2 33/221‘(5/3) (pﬁ?)f/s t2/3 when d = 2
Wit = k%;_T In (wat) when d = 3 (112)
const when d > 3.

As previously mentioned, the crossover between the
short- and long-time behavior depends on correlations in
the system that build up over time. The exact time for
this to happen cannot be read out of Eq. (102), since this
equation is obtained in the zero viscosity limit where the
force becomes uncorrelated. However, a crude estimate
of the crossover time ¢. can be obtained by assuming that
W (t) grows until the longest capillary wave has reached
its maximum amplitude. The corresponding time for this
to happen is t. = T'/4, where the period T' = 27 /wy is es-
timated by the inviscid disperson relation Eq. (70), using
k = 2n /L. This gives the result

te = /L3p/(1670) .

The L dependences in the d = 2 and d > 2 cases are in

(113)
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marked contrast. In two dimensions W depends on L as
the root-mean-square distance of a random walk depends
on time. In three dimensions, W depends very weakly on
L, and the numerical value of W is correspondingly small:
If a is taken to be the typical width of an atom, and L the
width of the earth, the factor y/In(L/a) is still less than
7. If o is taken to have some characteristic value, say
the surface tension between water and cyclohexane, o ~
0.03 N/m, and T to be room temperature, the prefactor
kBT /o is only 2 A.

However, in both two and three dimensions the rough-
ening time t., given by the growth time of the longest
capillary wave in the system, is relatively large. For
d = 3 and the above values of ¢ and T, L = 10 cm,
and p = 1000 kg/m3, we get the value t. ~ 5 s for the
crossover time. On the other hand, if the smallest wave-
length available to the system is chosen as a = 100 A,
we have that the time scale corresponding to the high
frequency cutoff 2m/w, &~ 1071 s. Hence Eq. (112) is
expected to hold over approximately ten orders of mag-
nitude in the time domain.

A study which has a somewhat similar aim as the
present one has been carried out by Kuhn [5] who consid-
ers the growth due to thermal motion of a given pertur-
bation on the interface of a stationary cylindrical body
of fluid. The perturbation is taken to have a Gaussian
shape, and the study is based on the essentially unqual-
ified assumption that the effect of correlations can be
neglected. Consequently, Kuhn assumes that the am-
plitude of the perturbation varies like the position of a
random walk, i.e., that it grows as t!/2, in contrast with
the result of Eq. (112).

VII. SIMULATIONS

We now turn to numerical simulations of fluctuating
fluid interfaces. We use the immiscible lattice gas [20],
a variant of the now classical Frisch-Hasslacher-Pomeau
(FHP) lattice gas [18], to simulate two fluctuating two-
dimensional fluids of equal densities and equal viscosi-
ties separated by an interface with surface temnsion o.
We choose to employ a lattice-gas model for several
reasons. First, compared with molecular dynamics, a
lattice-gas model allows one to bridge the microscopic
and macroscopic scales of hydrodynamics efficiently by
discretization of particle dynamics. Second, although
one could add interfacial tension and a fluctuating stress
tensor to a finite-difference approximation of the Navier-
Stokes equations, the microscopic nature of the lattice
gas allows statistical noise—and therefore hydrodynamic
fluctuations—to emerge naturally from the dynamics,
rather than being engineered into a model. Lastly, we
feel that the lattice-gas model is the simplest possible
way to investigate fluctuating interfaces. We shall see,
however, that a cost of this simplicity is an ambiguity in
the pertinent value of kgT'.

Below, we first provide a brief review of the immiscible
lattice gas. We then describe the numerical experiment
itself, and compare the equilibrium and nonequilibrium
behavior of the immiscible lattice gas with the theory
developed in the preceding sections.
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A. The immiscible lattice gas

The immiscible lattice gas (ILG) [20] and related mod-
els of hydrodynamic interfaces have been the subject of
a recent review [21], so our discussion here will be brief.

The basic two-dimensional lattice-gas model [18,19,21]
consists of a collection of identical particles moving from
site to site on a hexagonal lattice with one of six possible
velocities. When particles meet at a site, they collide in
a manner that can result in a change in their velocity,
but not the total momentum. From the conservation of
mass and momentum at this microscopic scale, and from
symmetry properties of the hexagonal lattice, macrody-
namics very close to the Navier-Stokes equations may be
derived using the methods of kinetic theory [18,19,22-24].

The ILG retains the simplicity of the original lattice
gas but with two additional complications. First, there
are now two types of particles, “red” and “blue.” Second,
the collision rule conserves an additional quantity (say,
the number of red particles) and is designed to create
interfaces and surface tension.

Figure 5 illustrates the ILG microdynamics, which
consist of successive iterations of a propagation or free-
streaming step followed by a collision step. Figure 5(a)
shows an abritrary initial condition, followed by the mo-
tion of each particle in the direction of its velocity to the
neighboring lattice site [Fig. 5(b)]. The collision step in
Fig. 5(c) creates interfaces and surface tension. Broadly
speaking, the ILG collision changes the configuration of
particles so that, as much as possible, red particles are
directed towards neighbors containing red particles, and
blue particles are directed towards neighbors containing
blue particles. The total mass, the total momentum, and
the number of red (or blue) particles are conserved. Two
examples of this collision rule are seen by comparing the
middle row of Fig. 5(b) with that of Fig. 5(c).

More specifically, the ILG microdynamics may be de-
scribed as follows. Each lattice site may contain red
particles, blue particles, or both, but at most one par-
ticle (red or blue) may move in each of the six directions
C1,...,C¢. In this implementation, each site also has a
seventh stationary, or rest, particle with zero velocity cg
and subject to the same exclusion rule. The configura-
tion at a site x is thus described by the Boolean variables
r = {r;} and b = {b;}, where the index ¢ again indicates
the velocity, and r; and b; cannot simultaneously equal
1.

At a site x, a color flux q is defined to be the difference
between the red momentum and the blue momentum:

6

q(r(x),b(x)) = Y ci[ri(x) — bi(x)].

=1

(114)

A vector proportional to the local color gradient is also
defined, by

f(x) = Z c; Z['rj(x +¢;) — bj(x + ¢ (115)

The ILG collision rule maximizes the flux of color in the
direction of the local color gradient. In other words, the

1637

result of a collision, r — r’, b — b’, is the configuration
that maximizes
q(r’,b’) - f, (116)

such that the number of red particles and the number of
blue particles are conserved,

6
Z'I",E= Ty Zblzzbu
0

6
(117)
= 1=0 1=0 =0

e

\ (c)

(a)

(b)

¥

FIG. 5. Microdynamics of the immiscible lattice gas [21], in
which the initial condition (a), the propagation step (b), and
the collision step (c) are displayed. The initial condition and
propagation step are the same as before, except that now some
particles are red (bold arrows) while others are blue (double
arrows). In the collision step, the particles are rearranged so
that, as much as possible, the flux of color is in the direction
of the local gradient of color. The ILG collisions can create
a “color-blind” microdynamics different from that created by
FHP collisions.
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as is the total momentum:

[ 2

(118)

If more than one choice for r’ and b’ maximizes (116),
then the outcome of the collision is chosen with equal
probability from among this set of configurations.

From a physical perspective, it is intuitively evident
from the ILG collision rules that the dynamics can be
antidiffusive; i.e., color can travel up the color gradi-
ent. This is the mechanism that creates interfaces if the
model is initialized as a random mixture. Further anal-
ysis [21,29] shows that surface tension is created at the
interface due to anisotropy in the local pressure tensor.

It is important to note that the particle interactions
described above are such that some input configurations
can never appear as output configurations. Hence the
interactions do not satisfy detailed balance (or, in other
words, the microdynamics are time irreversible). Also,
the particle dynamics do not satisfy energy conservation.
For these two reasons we shall only work with an effective
temperature kpTes, describing the effective strength of
the excitations of the interface, and not, as do other au-
thors [38], obtain this temperature theoretically in terms
of the stress fluctuations in the lattice gas. Below, how-
ever, we demonstrate that the concept of an effective tem-
perature is consistent by comparing the nonequilibrium
and equilibrium values obtained for kpT.g.

B. The numerical experiment and comparison
with theory

Simulations where carried out on lattices of size N x N,
with two completely separated phases of equal area and
the interface oriented in a direction perpendicular to a
lattice direction. Hence the flattest possible interface (on
the triangular lattice) has an initial width W = 1/4. The
location of the interface, and thus the height function
h(zj,t),j = 1,...,N, was determined using the scheme
described in Ref. [29].

The Fourier transforms of the (discrete) simulation
data are defined as follows:

ha(t) = %Ze_i’”ih(wj,t), (119)

h(w) = é}; S ey, (120)

where z; = (v/3/2)j, 5 = 1,..,N, and t; = j, j =
1,...,0. The wave numbers and frequencies are given
as k = (2n/L)n, n = £1,...,£N/2, and w = (27/O)n,
n = %1, ...,£0/2. The above definitions are the discrete
equivalents of the definitions given in Egs. (17) and (19),
and we shall make direct comparisons between the con-
tinuous transforms of the theory and the transforms of
the simulation data which are performed using Eqs. (119)
and (120).

The relevant material properties of the ILG simula-
tions,
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v = 0.2357,
o = 0.403,
p =49,
kpTeg = 0.126 , (121)

are all given in units which are combinations of the lat-
tice constant and the simulation time step. These quan-
tities are set to 1. Hence the above quantities appear
dimensionless. The first two quantities are obtained by
theoretical analysis [21], and depend only on the density
p. While the theoretical prediction for v is reliable, the
prediction for o has a relative accuracy that is probably
no better than 10%. The temperature, which also de-
pends on the density, is the only free parameter in the
simulations.

Frequency power spectrum

In Fig. 6(a), the power spectrum |y (w)|? for the sim-
ulated interface in equilibrium is shown on a log-log plot
along with the theoretical prediction given by Eq. (85).
This frequency spectrum was computed from a consec-
utive series of 22° ~ 108 interfaces with N = 32. Each
data point results from the average over bins of at least
512 frequency values. The effective temperature kT.g
was chosen to minimize the difference between theory
and simulation.

Theoretically, there are three significant features in the
power spectra. First, there is the peak at wg correspond-
ing to the capillary wave of wave number k. Then, there
is the plateau to the left of this peak, showing significant
low frequency behavior over one to two orders of mag-
nitude. Finally, there is the 1/w”/? decay at high fre-
quencies. Each of these properties predicted by theory
is captured by the ILG, with agreement spanning over
three orders of magnitude on the vertical axis. However,
a clear departure from the theoretical predictions is ob-
served above the frequency c,/H, where ¢, = 4/3/7 is
the speed of sound in the ILG [21] and H = N is the
height of the box. For the smallest wave number, the
peaks of the three first standing sound waves of the sys-
tem are visible. These have wavelengths H, H/2, and
H/3, respectively. The height of the system is the rele-
vant length, because the sound waves creating distortions
in the interface height have wave vectors perpendicular
to the interface. By doing the simulations in systems of
greater height, it was checked that there was no signifi-
cant H dependence in the low frequency behavior. The
high frequency (w > 2wc,/H) behavior of the power spec-
trum obtained from simulations.

|h(w)|? ~ 1/w™ where 1.0 < a < 1.2, (122)
may be a consequence of compressibility effects in the
lattice gas, and could possibly be explained by a Landau-
Placzek type theory [25]. The low frequency plateau of
the power spectrum diminishes and the peak at the capil-
lary wave frequency becomes more pronounced when k2v
is decreased. At large k%v the dominant small-frequency
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behavior is caused by the fact that in a thick fluid the
relaxation of the interface is relatively slow.

Figure 6(b), which shows the result of an N = 96 sim-
ulation along with the two theoretical results Eqgs. (85)
and (91), is included to quantify the effect of correlations
in F in the simulations. The effective k BT which is taken

_ -1.0 ¢}
@
3
=
e =30 ¢
(@)
o
-5.0 : :
-3.0 -2.0 -1.0 0.0
log,, (®)
2.0 .
(b)
@ 0.0 .
3
£ -
o —20 & 1
k<) = -
-4.0 :
-3.0 -2.0 -1.0
log,, (®)

FIG. 6. (a) The power spectrum |hx(w)|?/© for the wave
numbers k = 2x /L, k = 4w /L, and k = 6w /L; N = 32. The
solid lines show the theory, Eq. (85), and the circles, trian-
gles, and squares show the results of simulations for large to
small wavelengths, respectively. The same effective tempera-
ture was used for all three theoretical curves. (b) The power
spectrum for k = 2w/L and N = 96. The circles show sim-
ulations, the straight line the theory given by Eq. (85), and
the dashed line the theory given in Eq. (91) corresponding
to uncorrelated interface forces. The inset shows the ratio of
the power spectrum corresponding to a correlated force given
in Eq. (85) to the spectrum corresponding to an uncorrelated
force given in Eq. (91). The dashed line shows the high fre-
quency approximation in Eq. (93) of the ratio of the power
spectra.
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as input in Eq. (85) is the same as that used in Fig. 6.
The effective temperature used in Eq. (91) is chosen so as
to obtain agreement with the simulations in the low fre-
quency regime where the uncorrelated theory is expected
to work best.

The inset of Fig. 6(b) shows the ratio, which is given
in Eq. (92), of the power spectra corresponding to a cor-
related and an uncorrelated force, respectively. For the
ratio to be larger than 1.5 we must have w > 7k?v. In the
N = 96 simulations the frequency where the crossover to
compressible behavior is observed is w ~ 20k%v. Below
that frequency the results, although somewhat ambigu-
ous, indicate a better agreement between simulations and
the correlated theory than with the uncorrelated one.

Nonequilibrium interface roughening

The good accord between theoretical predictions and
empirical measurements of the frequency power spec-
trum can be considered as a validation of the equilib-
rium properties of ILG interfaces. Figure 7, on the other
hand, displays a comparison of simulations of nonequi-
librium roughening with predictions from theory. The
width W is shown as a function of time for system sizes
N = 16,32,64,96,128, and 196; both the width and
the time are rescaled in accordance with the prediction
of dynamical scaling giving by Eq. (106). The same
value of kT g derived from the frequency power spectra
of Fig. 6(a) is also used here to calculate the theoretical
curves. The same data are plotted on a log-log scale in
Fig. 8.

Four features of the roughening and consequent equi-
librium state are notable. First, and most impressive,
is the excellent accord, over almost three orders of mag-
nitude, between the predicted /3 growth of the width
and the theoretical prediction. The slight underestimate
of the theory may be due to the finite initial width of
the interface. Indeed, one can see that for each case the
initial values of the width (i.e., the first few time steps)
do not match the theoretical growth rate.

The second feature of interest is the sharp crossover
from nonequilibrium to equilibrium roughening. The
dashed line shows the estimate of the crossover time given
in Eq. (113).

The third feature of note is the applicability of the dy-
namical scaling relation of Eq. (106). However, whereas
dynamical scaling holds for all interface sizes during the
transient growth, it holds only for N < 64 for the static
interface width. For N > 64, the asymptotic width scales
as W ~ (L/InL)'/? rather than W ~ L'/2 as predicted
by theory. There are several possible explanations for
this breakdown of scaling for large L. First, the loga-
rithmic factor might possibly be due to k-dependent cor-
rections to transport coefficients which are known to ex-
ist in two-dimensional hydrodynamics and have been ob-
served in lattice-gas simulations [23,39]. However, since
neither viscosity nor diffusivity determines our estimates
of asymptotic roughness, this explanation seems inade-
quate. Another possibility is that the ILG surface tension
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FIG. 7. The root-mean-square interface
width W as a function of time for simula-
tions of the immiscible lattice gas. The time
t is scaled as t/L%/? and W as W/L/2. The
system sizes are N = 16, 32, 64, 96, 128,
and 196, and the lower values of W/L corre-
spond to larger L. The straight line shows
the theoretical predictions in Eq. (104).
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may be size dependent, but this has never been noted
previously. Lastly, kT.g may itself be size dependent,
due to correlations that arise from the time-irreversible
ILG collision rules. This last explanation seems the most
plausible, but, like each of the effects noted above, it
seems unlikely because the logarithmic correction is not
observed for N < 64.

Finally, we note that the scaled asymptotic rough-
ness is seen to be rather small. For example, when
N = 32+/3/2, the asymptotic roughness W ~ 0.8 lat-
tice units. Hence the ratio between the wavelength and
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-0.9
— -11}
>
N
S
(@]
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-15 }
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-3.0 -2.0 -1.0 0.0
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FIG. 8. The same data as in Fig. 7 in a log-log plot
with Y = W/LY? and X = t/L32. The straight, full
lines show the theoretical predictions given in Egs. (104)
and (112), and the dashed line shows the predicted
crossover time given in Eq. (113). The system sizes are
L =16(0), 32(0), 64(0), 96(+), 128(A), 196(0).

3.0

system size is small, as assumed at the outset of our anal-
ysis.

In summary, we find that the predictions of fluctuating
incompressible hydrodynamics are clearly evident in the
ILG simulations. Thus, despite the fact that the ILG’s
microdynamics is time irreversible, the concept of an ef-
fective temperature that quantifies the coupling between
the interface and bulk excitations appears to be mean-
ingful.

VIII. CONCLUSIONS

We have studied equilibrium and nonequilibrium fluc-
tuating fluid interfaces, both theoretically and by sim-
ulation. Our principal theoretical contributions are a
fluctuation-dissipation theorem, based on fluctuating in-
compressible hydrodynamics, and a corresponding equa-
tion of motion for a hydrodynamic interface. This equa-
tion of motion is written in terms of the interface de-
grees of freedom only, and it is non-Markovian except
in the high viscosity limit. The correlations of the force
Fy acting on the interface have been derived explicitly
and shown to have a finite correlation time (k?v)~1. A
complete description of an interface in a thermally ex-
cited fluid is obtained when Fj is taken as the driving
force in the equation of motion. Comparison between
this description and a description which is simplified by
neglecting the force correlations has been made. From
the fully correlated theory we have derived both the fre-
quency power spectrum that characterizes the equilib-
rium state of the fluid and the nonequilibrium behavior
that results when the interface relaxes from an initially
flat state. For two-dimensional fluids, the theory pre-
dicts that interfaces roughen in a manner that satisfies
a dynamical (or finite-size) scaling law. The key fea-
tures of the predictions are well confirmed by simulations
of fluctuating hydrodynamic interfaces performed with a
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momentum-conserving lattice-gas model.

Interestingly, the predicted dynamical scaling proper-
ties of fluctuating interfaces in two-dimensional fluids
match those of the Kardar-Parisi-Zhang equation [15].
This accord appears to be merely a coincidence, since
the KPZ equation describes an entirely different—and
purely local-—growth dynamics. Nevertheless, our study
of fluid interfaces represents a hydrodynamic application
of concepts usually applied to simpler local aggregation
phenomena.

Our results for dynamical roughening are perhaps most
interesting for two-dimensional fluids where the asymp-
totic interface width has a significant dependence on the
system size L. In this case, the time-dependent width
W (t) ~ t*/3 up to a sharply defined crossover time of the
order of the longest capillary wave period of the system.
For three-dimensional fluids the roughening at long times
is a Int growth. Thus it appears that experimental study
of roughening fluid interfaces would probably be most re-
vealing in two-dimensional fluids. The two-dimensional
hydrodynamics of soap films [40] might possibly offer an
opportunity for such experiments.

Lastly we wish to emphasize that our study represents
the most detailed validation to date of the dynamics of
moving interfaces in lattice-gas automata. Both the t1/3
growth of the roughness and the frequency power spec-
trum of the equilibrium fluctuations result from hydro-
dynamics coupled to fluctuations. The good accord seen
between theory and simulation indicates that the immis-
cible lattice gas captures the principal features of fluctu-
ating multiphase fluids from mesoscopic to macroscopic
scales. In particular, the fluctuation dynamics have been
probed and verified over a frequency spectrum ranging
from the slow behavior of viscous diffusion to the rela-
tively rapid dynamics of capillary wave oscillations and
finally to the high frequency cutoff set by compressibil-
ity effects (sound waves). However, to obtain our results
we have had to define an effective temperature in the
lattice gas. Moreover, there are weak logarithmic cor-
rections to the scaling of the asymptotic width of the
largest interfaces. From a theoretical point of view, both
of these issues could perhaps be resolved by performing
a Green-Kubo analysis of the fluctuating hydrodynamics
[41]. Such work, possibly in conjunction with simulations
of fluctuating interfaces in three dimensions, is one of the
most promising avenues of future theoretical study.

ACKNOWLEDGMENTS

We thank Dik Harris and Knut Jgrgen Malgy for valu-
able discussions. We are also grateful to Howard Stone
for his critical and thoughtful remarks and for greatly
improving Appendix A. We thank Reuven Zeitak for use-
ful comments and for solving the integral of Eq. (111).
This work was supported in part by NSF Grant No.
9218819-EAR and by the sponsors of the MIT Porous
Flow Project. E. G. Flekkgy acknowledges support by
NFR, the Norwegian Research Council for Science and
the Humanities, Grant No. 100339/431.

APPENDIX A: THE GREEN’S IDENTITY

In the following we derive the Green’s identity which,
together with the correlation function for the force den-
sity, forms the basis for the derivation of the fluctuation-
dissipation theorem. It is also derived in Ref. [8], al-
though on a slightly different basis. Using Gauss’s the-
orem and the hydrodynamic equations of motion, the
following derivation relates the fluctuating force in the
bulk to the fluctuating force F' on the interface. We
assume that the driving force f(x,t) satisfies f(x,t) = 0
when [t| > T’ or when |z| > I’. Thus, on account of the
dissipative nature of our system, the fluctuating velocity
4 will vanish outside some distance ! from the interface
which is sufficiently much larger than !’ and outside the
time interval [T, T] where T is sufficiently much larger

than T/. In the end we can always take T' and I’ to
infinity.
The average and fluctuating equations may be written
o’
Py T V.o, (A1)
on _ V.-+f A

Here we have used the notation @’ = u(x, —t) to denote
time reversal. The time reversed velocity appears also in
& and it is responsible for the minus sign on the left hand
side of Eq. (Al). By taking the inner product of @’ with
Eq. (A2) and the inner product of 1 with Eq. (A1) and
subtracting we get

.V.og—-u-V.-g-uf

(F-a)-V-(6-d)—-1u-f,

=]

(A3)

where we have used that the velocity fields are
divergence-free to simplify the right hand side, i.e., we
have applied the identity

V-(g-a)=(V-&)-a+6:Va

=(V-&)-a+2uE:E (A4)
where E is the usual rate-of-strain tensor, E = [Vu +
(Vu)7].

By integrating Eq. (A3) over the fluid domain, apply-
ing the divergence theorem with the unit normal directed
outward from V, and integrating over the time interval
(=T, T) we arrive at

T T
Oz/ /dS~&-ﬁ’dt+/ /ﬂ'-dedt. (A5)
-TJA -TJV

Here we have used a = 0 for x € I, and 1 — O as
t — +T. Equation (A5) is the desired result.

APPENDIX B: THE CORRELATION FUNCTION

We here evaluate the correlation function (hx(t)h}(0)),
starting from Eqs. (86) and (68).
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Figure 4 shows the integration contour used to evaluate
the above integral. The horizontal line below the nega-
tive real axis maps to the branch cut of the square root.
As the Cg part of the contour gives no contribution the
integral is given entirely by the poles at wy = Fw, — tw;
and the integration around C.yt.

In order to evaluate the poles we note that the denom-
inator of the right hand side of Eq. (68) can be written

. ok? 2p w k- w
(W) = 20 = R ki) ( 1t @) °)

x(w— 1+$ wo),

where 4(w) has been written out. It can be demon-
strated numerically that, when Eq. (75) holds, the above
expression has simple zero points when the second and
third terms on the right hand side are zero. These are
just the solutions of the capillary wave dispersion relation
Eq. (72). Correspondingly, we then obtain

(B1)

1

@—w)@—w)

Th(w) = 2%(1 + k/iq)

(B2)
Noting that when w — wx, (1 + k/ig) = (wx/wo)?, the
corresponding residues at the poles are then easily eval-
uated, giving Eq. (88).
We will evaluate the contribution from C., only in the
long-time limit. The substitution
1 iy +6,

Wy \B3)

where 6 is the distance between the cut and the contour,
gives the corresponding values for g, = +(v4)* /7. It is
then a straightforward algebraic problem to demonstrate

that
(P (£) hr(0)) cu
2 oo
pr kT 2, k2 ut]
enT il [7 gy e gy
_pikpTe "M 9 /w dy ¥ ity AY)
wkL k2v  Olt| Jo iy
(B4)
where
= iy[l +O(\/y)] for small y
Ay) { o<y~ 7/? for large y. (B5)

In the large-|t| limit the rapidly oscillating exponential
factor above will leave only the small-y contribution to
the integral. Substitution of the small-y form of A(y) in
Eq. (B4) gives a convergent integrand due to the time
derivative [which does not commute with the integration
when the asymptotic form of A(y) is used]. It follows

that
kgTpv [ 1 e
_ B P dy —— e’ vitly .
k3L L Y \/iye

The substitution u = ik?v|t|y then gives

(R (8)hr(0)) cut (B6)

4kgT pv? 1 o et
hi(t)hi(0))cut = B —
OO = S0 G |, U
_ 2kpgT pv? e kvitl
= kLo (Kot

x [L+O(kwlt) D], (BY)

which is Eq. (89).
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FIG. 3. The streamlines shown at various instants of time
t. The thicker streamlines correspond to a smaller velocity. T
is the period of the oscillations. The ratio of the viscous time
to the period (times 27) is @ = w/(k*r) = 1. The horizontal
base of each figure is one wavelength 27 /k.



